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General ized equations a re  proposed for  the heat t r ans fe r  and res i s t ance  in a turbulent flow 
of a gas along a flat a symmet r i ca l  channel of the d i f fu so r - con fuso r  type with rounded edges.  

The resu l t s  of an exper imenta l  investigation of heat t r ans fe r  and res i s tance  for  flat a symmet r ic  chan- 
nels of d i f f u s o r - c o n f u s o r  type were  given in [1, 2]. 

The problem a r i ses  of the represen ta t ion  of the exper imenta l  resul t s  on heat t r ans fe r  and res i s tance  
for  the gradient  flows of v e r y  complex type considered there .  Similar i ty  theory is fundamental to the solu-  
tion of this p roblem.  

It is quite obvious that in this problem the hydrodynamical  conditions, and, consequently,  the intensity 
of heat t r ans fe r ,  a re  determined by the flow-condition cr i te r ion ,  Re, and by the shape of the channel, which 
is charac te r i zed  by the following set of geometr ica l  c r i t e r i a  of pa rame t r i c  type: 

ac b c h 

r o a 0 a o a o 

The pa r a me t r i c  c r i t e r ion  h /a  o can be dropped, since in our exper iments  d e = (1.72-1.89)a0, i .e.  d e ~2ao, 
and it is sufficiently accura te  to assume that h >>a 0. When the gas moves in conditions in which heat t r ans -  
fe r  occurs ,  a t empera tu re  fac tor  has to be introduced into the number of arguments .  But in our case the 
t empera tu re  factor  is vir tual ly  constant and we take no account of it. 

Thus,  for  our  problem,  the general ized equations for  heat t r ans fe r  and res i s tance  have the form: 

N u = N u i R e ,  ~c  ' b c ) 
ao ao ao (1) 

~=~(l~e,  ac , h a 0  __ao , aoC ) (2) 

(the Prandt l  number P r  does not occur  since we a re  only studying gas flow). The effect  of the channel geo- 
mer ry  on the intensity of heat t r ans fe r  and res i s tance  appears  d i rec t ly  in t e rms  of the p r e s su re  gradients 
and the duration of their  action. Hence it is expedient to t r ans fo rm to arguments  indirect ly defining their  
effects .  

The effect of p r e s s u r e  gradients of different  signs can be taken into account by nondimensional p r e s -  
sure  gradients averaged with respec t  to the diffusor and confusor lengths: 

Y~ - z  and FF 
d x d (  X 

For  an ideal (frictionless) flow along a nonsymmetr ic  channel of d f f fu so r - con fuso r  type we have 
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TABLE 1. Geometrical  Characterist ics  of the Channels Investigated 
(Diffusor-  confusor type with rounded edges,  a 0 = 16.8 mm, 33.3 mm, 
47.7 m m  

~', deg 

12 
12 
12 
12 
12 

~, deg 

47 
23 
11 
4 

b, mi l l  

40 
40 
40 
40 
40 

c, ITI IYl 

2o = 
40 
80 

120 

b:c ] ~, deg ~, deg / b ,mm c, m m  
/ 

16 40 28 
8 40 40 

1 80 40 
j 12 120 40 

b:c 

5 : 1  
2 : 1  
i : 1  
2 : 1  
3 : 1  

where 

Fi ~ -  & tg,e oi  t~ ~ 
a 0 - a ~ a n d F 7 ~  a0a2 e , 

b c t 
a a = a o + ~ tg V = ao + -2 -  g % ac = a~ + b tg ? = a o + c tgq~. 

The duration of the pressure  gradients can be taken into account by introducing a parametric  criterion,  
for example, b/a0, since for investigations of channels we have 

c r + 
b f,.-- 

Then the general ized equations (1) and (2) take the forms 

If we make a transition from the natural scale  of length a o to the physical  U/Ua, we obtain modified 
express ions  for the nondimensional pressure  gradients,  averaged with respect  to the d i f fusor-confusor  
length: 

( t 
d x a dx d x 

These  are essent ia l ly  identical to the parameter 

which has been used in recent papers [3-5] as a characterist ic  of the p r o c e s s e s  of generation and degenera-  
tion of turbulence in a gradient flow past a fiat plate. For an ideal (frictionless) flow in an asymmetr ica l  
channel of d i f fusor-confusor  type we obtain 

F + : detg ~] and F-  ~ detg r163 . 
do Re aoRe 

Thus, the general ized equations take the forms: 

N u = N u ( R e ,  F +, V-, b / P 

\ ao l 

ao 

(5) 

(6) 
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Experimental  resul ts  on heat t ransfer  and res is tance  in the chalmels investigated (see Table 1) agree 
to a sufficiently high degree of accuracy  with the following cr i ter ia l  equations: 

1.2 - -  - -  , (7) 
Nu o F -6 \ ao / 

tr-I ( l ' ; - o,8 (s) 
j t-Too j 

where 
Nu o : 0.018Re ~ ; n : (0.012 + 0.00104Re.10 -4) 7; 

~0 = 0 3164Re-~ 25 ; m : (0.022 + 0.0Ol40Re. 10-4)?. 

The mean gas tempera ture  was takenas  the definitive temperature  and d e as the typical dimension. 

In (7) and (8) the experlmental  resul ts  on the intensity of heat t ransfer  and res is tance  are  given as 
proport ions of the corresponding computed values for flow in a channel of constant c ross  section along its 
length at a fixed value of Re, which makes it possible explicitly to est imate the effect of the factors  which 
are  charac te r i s t i c  of flows in a longitudinal p r e s s u r e  field of variable sign. 

In the experiments  F § var ied in the interval (-1.51-4.04) �9 10 -6, F -  in the interval (1.51-176) �9 10 -6. 
The effect of F-  was thus c lear ly  distinguished, while the effect of F + appeared in implicit  form,  i.e., in 
t e rms  of the dependence of the power indices n and m on T and Re. 

For  convenience of express ion the pa ramete r  F -  is r e fe r r ed  to the quantity 10 -6 (i.e., the ratio F-  
/10 -s is quoted), this being of the same order  of magnitude as Kcr = 2 �9 10 -6, which corresponds  to the effect 
of the laminarizat ion of the turbulent boundary layer  [5]. 

Equations (7) and (8) are  valid for Re = (10-80) �9 103; b/a = 0.87-7.15; 7 = 4-12 ~ In addition, (7) is 
applicable for F - / 1 0  -6 > 1.51 and Re/104 (F- /10 -6) < 10T, while (8) is applicable for 1.Sk (F- /10 -6) < 176. 
This difference in the boundaries within which (7) and (8) are applicable is because for the channels investi-  
gated an increase  in the d i f f u s o r - c o n f u s o r  ratio,  with T fixed (i.e., an increase  in F - )  leads to a continuous 
increase  in ~. Then the intensity of heat t ransfer  increases  only up to some limit,  after  which it begins to 
decrease .  This is confirmation that when turbulence generated in the diffusor is ~operative," the confusor 
must  have some par t icular  length. 
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N O T A T I O N  

is the Reynolds number;  
is the Prandtl  number; 
is the Nusselt  number; 
is the hydrodynamic res i s tance  coefficient; 
are  the width of diffusor entrance,  mean diffusor width, and width of diffusor exit respectively;  
is the diffusor length; 
IS the confusor length; 
is the coordinate in flow direction; 
IS the channel height; 
is the equivalent diameter  of diffusor entrance section; 
is the diffusor angle of expansion; 
is the confusor contract ion angle; 
~s the gas density; 
is the kinematic v iscos i ty  coefficient; 
m the static p res su re ;  
ts the gas velocity averaged with respect  to flow rate; 
is the potential flow velocity; 
are  the modified express ions  for the nondimensional p r e s su re  gradients averaged with respect  
to diffusor and confusor lengths; 
are  the p re s su re  gradient pa rame te r  and its cr i t ical  value. 
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